●ラボ用X線回折装置を用いた小角X線散乱測定の検討

Small- angle X-ray scattering analysis using laboratory equipment for X-ray diffraction

飯田 美樹 Miki Iida

1 はじめに

SAXS (Small-angle X-ray scattering,小角 X 線散乱) は、 数 nm ~数百 nm 程度の構造に照射された X 線が小さな角 度で散乱する現象を観測する分析手法であり、微粒子分散体 や高分子ミクロ相分離などを非破壊で分析できるという特徴 をもつ。SAXS の測定には高輝度の X 線源を用いた大型放射 光施設を利用することが多いが、大型放射光施設までのアク セスが不便であったり、利用時間に限りがあるために測定数 を限定する必要があったりと気軽に測定できるものではない。 そこで、ラボ用 X 線回折 (XRD) 装置を用いた SAXS 測定を 試み、大型放射光施設で観察される結果や顕微鏡を用いた観 察結果と比較して妥当な結果が得られるのかを検証すること にした。

2 分析の原理

図1に SAXS 測定装置の概要を示す。サンプルに X 線を照 射すると、その多くは透過するが、サンプルの電子密度分布 を反映した散乱 X 線もわずかに発生する。散乱 X 線のパター ンは、サンプル中に存在する構造の形状や大きさ、構造間距 離を反映して変化するため、逆に検出された散乱 X 線のパタ ーンを解析することによりサンプルの構造を推定するという のが SAXS 測定の意図するところである。なお透過 X 線は非 常にエネルギーが高く検出量が飽和する、あるいは検出器を 損傷させるおそれがあるため、ビームストッパーの設置等、 検出器に透過 X 線が入射されない工夫を施す。 Key Word : SAXS, scattering, microphase separation

サンプル中の電子密度分布に周期的な構造があるとき、X 線の散乱は、X線の波長をλ、構造間距離を d、散乱角2θとす ると、

$$\lambda = 2d\sin\theta \qquad (1)$$

となるときに検出される散乱強度が強くなる(Braggの条件)。 X線の波長が一定のとき、大きな構造ほど散乱角は小さくな る関係にある。SAXS 測定が対象とする散乱角は一般的に 20 < 5°程度であり、構造の大きさとして1~100nm程度で ある。このような微小サイズの構造を分析する他の手法とし ては、透過型電子顕微鏡(TEM)や走査プローブ顕微鏡(SPM) による観察が挙げられるが、これらはサンプルのごく一部の 断面や表面を観察しているに過ぎないのに対し、SAXS では より広範囲にバルクの平均的な構造を評価できることを特長 とする。

Bragg の式(1)から、同じサンプルでも X 線の波長が変化 すると散乱角は変化する。SAXS 測定結果について縦軸に散 乱 X 線強度をプロットするとき、横軸が散乱角では装置の X 線波長が異なる場合の結果を比較することが難しい。そこで SAXS 測定の結果は以下に定義される散乱ベクトル(図2) の大きさ q (式2)を用いて解析することが多い。

 $q = 4\pi \sin \theta / \lambda \qquad (2)$

東亞合成株式会社 R&D総合センター 基盤技術研究所 Base Technology Laboratory, General Center of R&D, TOAGOSEI CO., LTD. SAXS 測定の対象となるものの一つとして、高分子のミク ロ相分離構造が挙げられる。異種の高分子鎖が共有結合で連 結した一次構造をもつブロック共重合体やグラフト共重合体 は、同種高分子鎖同士で凝集相を形成するものの、異種高分 子鎖との共有結合の存在により巨視的に相分離することがで きず、分子鎖の広がり程度のサイズのミクロドメイン構造を 形成する¹⁾。ミクロドメインの形態として球、シリンダー、 ラメラ等があり、規則正しく配列された構造を SAXS 測定す るとピーク位置に特有のパターンを示すことが知られている。 表1に相分離構造と散乱パターンの一例をまとめる。

表1 ミクロ相分離構造と散乱パターン例									
相分離構造		ピーク位置(q)の比							
球		1	:	$\sqrt{2}$:	$\sqrt{3}$:	$\sqrt{4}$	
シリンダー		1	:	$\sqrt{3}$:	$\sqrt{4}$:	$\sqrt{7}$	
ラメラ		1	:	2	:	3	:	4	

ここで、当社現有のラボ用 XRD 装置の光学系を図3に示 す。X線発生器と検出器はゴニオメーターで作動し、XRD 測 定時にはサンプルをそれらの間に設置して反射法で回折角を 測定する。SAXS 測定のためには X線発生器をサンプルに対 し鉛直方向に固定し、サンプル下部に配置した検出器をゴニ オメーターで作動させ散乱 X線をスキャンする。大型放射光 施設と比較して X線源の輝度が低いため、検出感度はより低 くなる。しかし、社内所有装置であることによるアクセスの 良さ、利用時間の自由度の高さというメリットは大きいため、 どの程度の精度で SAXS 測定できるのかを確認することを目 的として本研究を実施した。

3 実験

3.1 サンプル

測定対象としてミクロ相分離構造の形成が期待されるブ ロックポリマーを採用した。セグメントは Hard-Soft-Hard のトリブロックとなっており、表2にその概要を示す。ポリ マーを溶剤に溶解して平らな容器に入れ、室温で5日間キャ ストした後、加熱真空乾燥(No. 1、2は175℃、No. 3、4、 5は140℃)し、徐冷することで膜厚 1mm のサンプルを得 た。

表2 サンプル						
No.	Soft	Hard	Hard / Soft / Hard (重量比)	相対 分子量		
1	BA	ACMO	10 / 80 / 10	中		
2	BA	ACMO	10 / 80 / 10	大		
3	BA	MMA	10 / 80 / 10	小		
4	BA	MMA	10 / 80 / 10	中		
5	BA	MMA	25 / 50 / 25	小		
BA; Butyl Acrylate						
ACMO; Acryloylmorpholine						
MMA ; Methyl Methacrylate						

3.2 SPM 測定

サンプルをミクロトームで切削して得られた精密断面を SPM で測定することによりミクロ相分離構造を観察した。 SPM 装置はオックスフォード・インストゥルメンツ製 MFP-3D Infinity を用いてタッピングモードで測定し、位相像を取 得した。カンチレバーは AC-160TS-C3 (共振周波数 300-400 kHz, バネ定数 27N/m)、Target point を 1.0V とし、斥力領 域 (Phase < 90°) にて測定した。

3.3 ラボ用 XRD 装置による SAXS 測定

ブルカージャパン製 XRD 装置 D8 ADVANCE を用いて SAXS 測定した。X線源は Cu Ka (λ =0.154nm)、40kV、40mA、 Göbel mirror を用いた平行光とし、線幅を 0.05mm とした。 検出器は LYNXEYE 一次元検出器、カメラ長 0.28m であり、 0.05mm スリットを用いた。露光時間は 0.1 \leq 20 \leq 0.4 では 12s/step、0.4<20 \leq 1.0では 128s/step とした。データ間隔は、 0.1 \leq 20 \leq 0.7 では 0.01°、0.7<20 \leq 1.0 では 0.02° とした。

3.4 大型放射光装置による SAXS 測定

あいちシンクロトロン光センター (AichiSR) の BL8S3 を

用いて SAXS を測定した。X 線源は λ =0.150nm、ビームサ イズは 0.32×0.57mm であり、露光時間は 120s とした。検 出器は R-AXIS 二次元検出器を用い、カメラ長 4m、ピクセ ルサイズ 100 μ m×100 μ m とした。

4 結果

図4~8にサンプルの SPM 位相像と SAXS プロファイル を示す。SPM 位相像とは、探針と試料の相互作用により探針 の振動の位相ずれを反映したものであり、サンプルの粘弾性 の違いによって位相ずれの大きさは変化する。サンプルが硬 い場合は位相ずれが小さく、より軟らかい場合は位相ずれが 大きくなる。図に示した SPM 位相像においては、色が明る い部分は位相ずれが大きいことを表すためより軟らかく、暗 い部分は位相ずれが小さいことを表すためより軟らかく、暗 い部分は位相ずれが小さいことを表すためより硬いというこ とを示唆している。SAXS プロファイルはサンプル測定値か らブランク測定値を差し引いたものである。

サンプル No.1 (図4) は SPM 位相像より直径 30nm 程度 のより硬い球状の構造と棒状の構造が見られることから ACMO セグメントがシリンダー構造を形成していると判断 した。SAXS プロファイルは、測定装置が違っても横軸qに対 するピーク位置はよく一致しており、ラボ用 XRD 装置によ る測定でも大型放射光施設による測定と矛盾しないデータが 得られた。 $1^{\text{st}} \cdot 2^{\text{nd}} \cdot 3^{\text{rd}}$ ピークまで確認でき、そのq値の比(1: $\sqrt{3}:\sqrt{4}$)からもシリンダー構造の散乱パターンであることが 確認できた。

サンプル No.2 (図5) は No.1 のモノマーの種類と組成比 は同じとし、分子量を大きくしたものであるが、SPM 位相像 から ACMO セグメントが島、BA セグメントが海となる不均 ーな形状の海島構造が確認された。シリンダー構造と球状構 造の間のような構造とも見える。No.1 と同じモノマー組成比 にも関わらずミクロドメイン形状が違うのは、分子量や分子 量分布が違うことが原因である可能性がある。また完全な球 状構造ではなく不均一な形状となっていることから、熱アニ ール時間が不足している等、相分離構造が安定化する前に取 り出したサンプルである可能性もある。球状の島の直径は 70nm 程度あり、構造間距離は 100nm 前後であった。SAXS プロファイルにおいては、ラボ用 XRD 装置では 1st ピーク 位置は大型放射光施設の結果とよく一致しているものの、2nd ピーク以降は不明瞭であった。

図7 サンプル No.4 SPM 位相像(上), SAXS プロファイル(下)

サンプル No.3 (図6)、No.4 (図7) は SPM 位相像から MMA セグメントが島となる球状に近い海島構造であること が確認された。球状構造は一部連結しているようにも見える。 ミクロドメインサイズは直径 20nm 前後であり、No.3 より も No.4 の方がやや大きく、ドメイン間隔も大きい。No.4 は No.3 と同じモノマー組成でより分子量が大きいものであり、 それにともないミクロドメインサイズも大きくなっているも のと考えられる。SAXS プロファイルは 1st ピーク位置は大 型放射光施設とラボ用 XRD 装置とでよく一致していた。そ れより広角側のピークは不明瞭であり、q比を用いて相分離 構造の形状を推定することはできなかった。

サンプル No.5 (図8)は SPM 位相像よりラメラ構造であ ることが確認された。大型放射光施設での SAXS プロファイ ルにおいてq比が1:3の位置に明瞭なピークが出現している ことからもミクロ相分離構造がラメラ構造であることが示唆 された。2nd ピークが不明瞭であるが、これは二元系ブロック ポリマーにおいて体積分率φ=0.5 であるため 2nd ピークが消 減したものと考えられる²⁾。ラボ用 XRD 装置での SAXS プ ロファイルは 1st ピークのみ出現しそれより広角側には明瞭 なピークが現れなかった。 どのサンプルにおいても、ラボ用 XRD 装置での SAXS プ ロファイルは広角側になるほど、大型放射光施設による測定 では見られたピークが見られないという傾向があった。サン プルにもよるが、q 値にして 0.4 以上程度の領域ではピーク が不明瞭となる。これはサンプルに照射する X線の輝度の違 いによると考えられる。つまり、ラボ用 XRD 装置では照射 X線の輝度がより弱いため、その散乱 X線はさらに弱く、ノ イズに対し充分なシグナルが得られなかったと考えられる。 広角側のシグナルはラボ用 XRD 装置での露光時間を長時間 化しても現れなかったことからも、前述の推察を裏付けるこ とができる。広角側のシグナルが得られない場合、1st ピーク と 2nd ピークの出現する q 値の比からミクロ相分離構造の 形状を推察することが困難となる。

構造の大きさを推定する手法として Guinier の法則を利用 した解析が知られているが、この手法は構造の回転半径をRa としたとき $q < 1/R_g$ を満たす小角領域で成り立つ ³⁾。サン プルの構造が $R_q = 10$ nm であると仮定した場合、q < 0.1の領 域の散乱 X 線を検出する必要がある。しかしラボ用 XRD 装 置での測定の場合、qが0.14程度より小角の領域においては、 プロットの形状に測定再現性がないことがわかった(図9)。 これは、q < 0.14の領域においては透過X線が散乱X線に対 し大過剰に存在するため、検出誤差が大きくなるものと考え られる。ミクロ相分離構造のサイズとして 10 nm 以上のもの を扱う場合が多いことを考慮すると、ラボ用 XRD 装置では Guinier の法則による構造の大きさの推定は困難であると判 断した。一方、大型放射光施設においては q が 0.05 程度の 小角領域でも測定再現性があるようだった。大型放射光施設 ではカメラ長がより長いため、より小角側での測定が可能で あるものと考える。

サンプル No.1~5 について、1stピーク位置 q₁ を用いて式

3にてドメイン間隔Dを推定した。また、 2^{nd} ピーク位置 q_2 が 0.1 < q_2 < 0.4 の位置に出現した場合はミクロ相分離構造の 形状推定のため q_2/q_1 比を計算した。計算結果を表3にまとめ る。

$$D = 2\pi / q_1 \tag{3}$$

ドメイン間隔Dについてはラボ用 XRD 装置の測定結果と 大型放射光施設の測定結果で同様の値となり、分子量の違い によるDの大小関係はサンプル No.1 < No.2、No.3 < No.4 と矛盾しない結果となった。Dの絶対値が SPM 観察で得られ たドメイン間隔の大きさと一部違うのは SPM 測定がごく局 所的な観察であるのに対し、SAXS 測定ではバルク全体の 様々な周期構造が重なって検出されるという特性の違いによ るものと考えている。

表3 SAXS 解析結果							
	ラボ用XRD装置		大型放射	寸光施設			
No.	D (nm)	$q_{2/q_{1}}$	D (nm)	q_{2}/q_{1}	相分離構造		
1	26	1.71	26.3	1.73	シリンダー		
2	33	1.63	31.7	1.62	-		
3	21	-	20.8	1.66	-		
4	27	-	27.2	1.97	-		
5	22	-	22	2.11	ラメラ		

5 まとめ

高分子ミクロ相分離構造についてラボ用 XRD 装置による SAXS 測定を行い、その有用性を確認した。大型放射光施設 での測定結果と比較し、ピークの感度は劣るものの1stピー ク位置は一致し、ドメイン間隔の大きさを評価できることが わかった。ラボ用 XRD 装置で測定解析できる範囲としては 0.14 < q < 0.4 程度であり、構造の大きさにして 15~60nm 程度である。qが 0.14 以下の場合は透過 X 線の影響が大き く、qが0.4以上の場合はノイズの影響が大きくサンプルに よってはピークが出現しない場合があった。測定可能な範囲 は限られているものの、まずラボ用 XRD 装置で測定し、サ ンプルを選定してから大型放射光施設で測定するといった 利用も可能である。本検討の測定条件ではラボ用 XRD 装置 での測定時間は1 サンプルあたり1 時間半程度と大型放射 光施設での測定時間よりも長くなったが、オートサンプラー を利用でき、かつ社内で所有している装置へのアクセスの良 さを考慮するとラボ用 XRD 装置の利用価値は高い。今回は 現有 XRD 装置を利用したが、SAXS 測定専用のラボ型装置 もいくつか市販されているため、より詳細な分析を要する場 合はそれらの利用も視野に入れたい。

引用文献

- 高分子学会, "新高分子実験学6高分子の構造(2)散乱 実験と形態観察", 共立出版 (1997) p.214.
- 橋本竹治, "X線・光・中性子散乱の原理と応用"付録, 講談社 (2017) p.411., https://www.kspub.co.jp/download/4241b0f4b627591a15 89f815c46138fc2bbbfdb8.pdf,(参照 2023-09-22)
- 3) 雨宮慶幸, 篠原佑也, "X 線小角散乱の基礎と今後の展開", Journal of the Japanese Society for Synchrotron Radiation Research (JSSRR), Vol.19, No.6 (2006), http://www.jssrr.jp/journal/pdf/19/p338.pdf, (参照 2023-09-22